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GENERAL FRAMEWORK FOR ACHIEVING TEXTBOOK MULTIGRID EFFICIENCY: 

ONE-DIMENSIONAL EULER EXAMPLE 

JAMES L. THOMAS*, BORIS DISKINt, ACHI BRANDT*, AND JERRY C. SOUTH, JR.§ 

Abstract. A general multigrid framework is discussed for obtaining textbook efficiency to solutions of the 

compressible Euler and Navier-Stokes equations in conservation law form. The general methodology relies on 

a distributed relaxation procedure to reduce errors in regular (smoothly varying) flow regions; separate and 

distinct treatments for each of the factors (elliptic and/or hyperbolic) are used to attain optimal reductions 

of errors. Near boundaries and discontinuities (shocks), additional local relaxations of the conservative 

equations are necessary. Example calculations are made for the quasi-one-dimensional Euler equations; the 

calculations illustrate the general procedure. 

Key words, textbook multigrid efficiency, distributed relaxation, Euler equations 

Subject classification. Applied and Numerical Mathematics 

1. Introduction. Computational fluid dynamics (CFD) has become an integral part of the aircraft 

design cycle because of the availability of faster computers with more memory and improved numerical 

algorithms and physical models. More impact is possible if reliable methods can be devised for off-design 

performance, generally associated with unsteady, separated, vortical flows with strong shock waves. Such 

computations demand significantly more computing resources than are currently available. 

The current Reynolds-averaged Navier-Stokes (RANS) solvers with multigrid algorithms require on the 

order of 1500 residual evaluations to converge the lift and drag to one percent of their final values, even for 

relatively simple wing-body geometries at, transonic cruise conditions. It is well known for elliptic problems 

that solutions can be attained optimally by using a full multigrid (FMG) process in far fewer (on the order of 

2 to 4) residual evaluations. A multigrid method is defined by Brandt [2, 3, 4] as having textbook multigrid 

efficiency (TME) if the solutions to the governing system of equations are attained in a computational work 

that is a small (less than 10) multiple of the operation count in the discretized system of equations. Thus, 

operation count may be reduced by several orders of magnitude if TME can be attained for the RANS 

equations. 

State-of-the-art multigrid methodologies for large-scale compressible flow applications use a block-matrix 

relaxation and/or a pseudo-time-dependent approach to solve the equations; significant improvements have 

been demonstrated with multigrid approaches, but the methods are not optimally convergent. The RANS 

equation sets are systems of coupled nonlinear equations which are not, even for subsonic Mach numbers, 

fully elliptic, but contain hyperbolic partitions. The distributed relaxation approach of Brandt [2, 3] de- 

composes the system of equations into separable, usually scalar, factors that can be treated with optimal 

methods. Several years ago, an investigation was started to extend this approach to large-scale applications; 
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at that time, several TME demonstrations for incompressible simulations had been completed and Ta'asan 

had shown promising results for the subsonic Euler equations [18]. Progress has been shown in extending 

the methodology to viscous compressible flow applications [19] and to compressible Euler equations using 

a compact differencing scheme [17]. Further incompressible flow applications have been made, including 

complex geometries [14] and high-Reynolds-number viscous flow in two [20] and three dimensions [13]. The 

progress and remaining barriers in TME for the equations of fluid dynamics were summarized in [4]. 

The purpose of this paper is to discuss the general framework expected to be required for large-scale 

compressible flow applications. The quasi-one-dimensional Euler equations are solved to illustrate the frame- 

work. Fully subsonic and supersonic applications, as well as transonic applications with a captured shock, 

are shown. 

2. General Framework. The viscous compressible equations for the time-dependent conservation of 

mass, momentum, and energy can be written as 

9tQ + R = 0, (2.1) 

where the conserved variables are Q = (p,pu,pv,pw,pE)T, representing the density, momentum vector, 

and total energy per a unit volume, and R(Q) is the spatial divergence of a vector function representing 

convection and viscous and heat transfer effects. In general, the simplest form of the differential equations 

corresponds to nonconservative equations expressed in primitive variables, here taken as the set composed of 

velocity, pressure, and internal energy, q = (u, v,w,p, e)T. These equations are found readily by transforming 

the time-dependent conservation equations to time-dependent primitive variable equations. Similarly, a set of 

nonconservative correction equations can be derived, with a right hand side vector composed of a combination 

of the conserved residual terms, given as 

L*q = -^R. (2.2) 

In Eq. (2.2), Ja is the Jacobian matrix of the transformation and the correction öq = qn+1 — q", where n 

is an iteration counter. For steady-state equations, the time derivative is dropped. At the discrete level, the 

right side of the correction equation (2.2) is a combination of conservative-discretization residuals while the 

left side is the principal linearization of the nonconservative operator. 

Note this is not a Newton linearization; only the principal terms in a linearization of R are retained. 

The principal terms are those terms that make a major contribution to the residual per a unit change in 

q. The principal terms thus generally depend on the scale, or mesh size, of interest. For a scalar equation, 

the discretized highest derivative terms are principal on grids with small enough mesh size h. In deriving 

the principal linearization for high-Reynolds-number simulations, it is essential to consider both inviscid 

and viscous scales — the inviscid scales dominate over most of the flow field and the viscous scales are 

important in the thin viscous layers near bodies and in their wakes. Note that, for a discretized system of 

differential equations, such as R = 0, the principal terms are those that contribute to the principal terms of 

the determinant of the matrix operator 9ß. The coefficients of the principal terms in L are evaluated from 

the current approximation. 

The principal linearization is applied to the correction equation based on a nonconservative approxi- 

mation.   Thus, we expect the correction to be good away from discontinuities (shocks, slip lines) in the 



flow field. It is in these regular (smoothly varying) flow regions that we apply distributed relaxation. The 

distributed relaxation method replaces <5q by M<5w so that the resulting matrix L M becomes a diagonal or 

lower triangular matrix, as 

LM6w = -J^R- (2-3) 

The diagonal elements of L M are composed ideally of the separable components of the determinant of the 

matrix L and represent the elliptic or hyperbolic factors of the equation. In [3, 8], the <5w variables were 

termed as "ghost variables," because they need not explicitly appear in the calculations. 

The distributed relaxation approach yields fast convergence for both steady and unsteady simulations 

if the constituent scalar diagonal operators in LM are solved with fast methods. The approach can be 

applied to quite general equations; a set of matrices M has been derived in [3] to provide a convenient lower 

triangular form for the compressible and incompressible equations of fluid dynamics (including a variable 

equation of state). 

For the compressible Euler equations, the scalar factors constituting the main diagonal of L M are con- 

vection and full-potential operators. An efficient solver for the former can be based on downstream marching, 

with additional special procedures for recirculating flows [7, 8, 21]; the latter is a variable type operator, and 

its solution requires different procedures in subsonic, transonic, and supersonic regions. In deep subsonic 

regions, the full-potential operator is uniformly elliptic and therefore standard multigrid methods yield opti- 

mal efficiency. When the Mach number approaches unity, the operator becomes increasingly anisotropic and, 

because some smooth characteristic error components cannot be approximated adequately on coarse grids, 

classical multigrid methods severely degrade. The characteristic components are those components that are 

much smoother in the characteristic directions than in other directions [4, 11, 10]. In the deep supersonic 

regions, the full-potential operator is uniformly hyperbolic with the stream direction serving as the time- 

like direction. In this region, an efficient solver can be obtained with a downstream marching procedure. 

However, this procedure becomes problematic for the Mach number dropping towards unity, because the 

Courant number associated with the downstream marching procedure is large. Thus, a special procedure 

is required to provide an efficient solution for transonic regions. This local procedure [5, 6, 9] is based on 

piecewise semicoarsening and some rules for adding dissipation at the coarse-grid levels. 

Boundaries introduce some additional complexity in distributed relaxation. The determinant of LM is 

usually higher order than the determinant of L. Thus, as a set of new variables, <5w would generally need 

additional boundary conditions. In relaxation, because the ghost variables can be added in the external 

part of the domain, it is usually possible to determine suitable boundary conditions for <5w that satisfy the 

original boundary conditions for the primitive variables. Examples are given in [20] in incompressible flow 

for entering and no-slip boundaries. However, to construct such a remedy may be difficult and/or time- 

consuming in general. In addition, enforcing these boundary conditions causes the relaxation equations to 

be coupled near the boundaries, not decoupled as they are in the interior of the domain. 

Thus, near boundaries and discontinuities, the general approach [3, 4] is to relax the governing equations 

directly in terms of primitive variables. Several sweeps of robust (but possibly slowly converging) relaxation, 

such as Newton-Kacmarcz relaxation, can be made in this region. The additional sweeps will not affect 

the overall complexity because the number of boundary and/or discontinuity points is usually negligible in 

comparison with the number of interior points. 

This general framework is used below to solve the quasi-one-dimensional Euler equations in fully sub- 



sonic, fully supersonic, and transonic (with and without shock) flow regimes. The regular flow regions 

are relaxed with distributed relaxation. Boundaries and shocks are treated by applying local relaxation 

— corresponding here to updates through a direct solution of an approximate-Newton linearization of the 

conservative equations. 

In all cases, an FMG-1 algorithm is used; at each level, the equations are solved with an FV(2,1) full 

approximation scheme (FAS) [2, 20] multigrid cycle. Six levels are used in the cycle wherever possible. The 

total operation count in the FMG-1 algorithm is equivalent to about 40 residual evaluations. This somewhat 

excessive operation count is typical for one-dimensional problems, where the number of coarse-grid points is 

large relatively to multidimensional cases. In three-dismensional problems, the expected operation count is 

about 8 residual evaluations. 

3. Quasi-One-Dimensional Equations. The quasi-one-dimensional equations express the conserva- 

tion of mass, momentum, and total energy as 

ft(Q) + R = 0, (3.1) 

where 

Q = Qa = (p,pu,pE)Ta, (3.2) 

R=aa(Fff) + S, (3.3) 

and a — a(x) is the area term. The flux F and the source term S are defined as 

pu 

F=|     pu2+p     |, (3.4) 

puE + up 

(3.5) 

The pressure p, internal (thermal) energy e, and sound speed c are related through the equation of state as 

p = (7 - l)pe, (3.6) 

e = E- «2/2, (3.7) 

c2 = 7P/P, (3-8) 

and 7 is the ratio of specific heats. 

A discrete conservative upwind-biased differencing approximation to R can be defined for first- or second- 

order accuracy as 

R; = {[(F°h+i - (*H-il 
-(O.Pi.Offo+i-^   .]. (3.9) 



Here, a finite-volume discretization is used, where subscripts j + | and j — | denote the right and left 

interfaces, respectively, of the cell centered at location j and the cell spacing in the x—direction is h. The 

flux-differencing splitting of Roe [15] is used to construct the interface flux F-+i; pertinent details are 

described in appendix A. We consider only first- or second-order accuracy and do not differentiate between 

average and pointwise values of Q. The area distribution is defined as a(x) = 1 — 0.8a;(l — x). For all of 

the results presented below, we overprescribe the boundary values from the exact solution of the differential 

problem at the cell centers that lie outside of the domain 0 < x < 1. 

4. Relaxation Schemes. Several schemes are considered below for relaxation of the steady-state equa- 

tions 

R, = 0. (4.1) 

The schemes are all written in delta form, so that the correction to the solution is solved at each iteration, 

denoted as JQ = Qn+1 - Qn. 

4.1. Conservative Relaxation Scheme. The exact Newton linearization of the discrete conserva- 

tive equations generally leads to an overly complicated linear system to solve. In practice, a quasi-Newton 

(approximate) linearization is used to reduce the algebraic complexity of the construction and/or the band- 

width of the resulting linear system. For the purpose of constructing a conservative relaxation scheme, an 

approximate but conservative linearization of the operator (3.9) can be written as 

[S-A++S+A-)(Q). (4.2) 

The operators ö~ and <5+ denote backward and forward first-order-accurate difference operators, respectively, 

and A+ and A~ denote the positive and negative eigenvalue contributions to the similarity matrices (see 

appendix A and [12] for references). 

The conservative relaxation update <5Q is computed from 

KT A+ + «5+ A-](6Q) = -—Rj. (4.3) 
ai 

The residuals in the right side of Eq. (4.3) are computed for the target discretization (4.1). The relaxation 

procedure requires a tridiagonal equation to be directly solved: 

(-At.jAlj.AT^WQ) = ~%. (4.4) 
"5 

Barth [1] analyzed this relaxation with fixed-point analysis and showed the relaxation is nearly as good 

as a full Newton iteration. An underrelaxation parameter, e.g., a pseudo-time step, can be introduced in 

the relaxation scheme to improve robustness and stability. Extensive computations made during the course 

of this investigation verified that this relaxation method can be used throughout the domain, including 

shocks and boundaries. In the general framework described and used in this paper, this relaxation is applied 

only locally to reduce residuals near boundaries and shocks and to solve the coarsest grid equation. In 

multidimensional case, any stable procedure converging for the primitive-variable conservative equations 



(4.1) (e.g., pseudo-time marching relaxation) can be applied for local relaxation. The large operation count 

per point required for convergence in this procedure does not affect the overall complexity of the algorithm, 
because the number of grid points in the local-relaxation regions is assumed to be negligible in comparison 

with the total number of grid points. 

4.2. Nonconservative Relaxation Scheme. A nonconservative relaxation scheme is derived from a 
conservative scheme, Eq. (4.3), with the assumption that the Jacobian matrices are locally constant, 

[A+5-+AS+](5Q) = --Rj. (4.5) 
"i 

This formulation is expected to be a good approximation to Eq. (4.3), except near discontinuities. The 

corresponding tridiagonal equation is 

(-At, |A|j, A7)(*Q) = -Aft,, (4.6) 
"3 

Subtracting the two tridiagonal equations, (4.4) and (4.6) yields 

(-A+_x + At, 0, Aj+1 - A7)(«5Q) = 0, (4.7) 

where the coefficients A+_: + At and AJ+1 - AJ — are 0(h) small on sufficiently fine meshes in 

regular flow regions. Near shocks, the nonconservative linearization used in Eq. (4.5) does not satisfy an 
order property and the nonconservative relaxation scheme would not be effective. These expectations were 
confirmed through computations with both the conservative and nonconservative relaxation schemes, where 

update Eqs. (4.4) and (4.6) were solved precisely. Barth [1] analyzed a similar nonconservative relaxation 
scheme with fixed-point analysis and showed poor performance of the nonconservative scheme for a flow with 

a shock. 

4.3. Distributed Relaxation. Away from boundaries and shocks, the linear update scheme Eq. (4.5) 
is relaxed with distributed relaxation. Transforming the corrections in Eq. (4.5) to primitive variables 

q= (u,p,e)T gives 

[k+S- + Ä-5+](Jq) = -(g), AR,, (4.8) 

with a right-side vector composed of a combination of the conserved residual terms. The Jacobian matrices 

are related through a similarity transformation to the conservative Jacobians: 

9Q    9q 

Alternately, by definition, the primitive variable correction equation is 

Ä^-^Ä (4.9) 

LJq=-fJ-, (4.10) 



where 

"=<ü>4fi'" (4'n) 

The elements of the matrix operator L are given in appendix B. 

As follows from Appendices A and B, the determinant of L for (u > 0) in deep subsonic or supersonic 

regions is 

det(L) = [(u2-c2)Sxx]uS~, (4.12) 

where 

_ J   Sx J+    for fully subsonic flow, ,       . 

1 öz K    f°r ^u^y supersonic flow. 

The first term in Eq. (4.12) represents an approximation to the full-potential operator and the second 

term represents an upwind approximation for the convection of entropy. In subsonic flow, 5XX is a central 

discretization associated with the ellipticity of the full-potential operator. In fully supersonic flow, Sxx is 

a one-sided or upwind-biased approximation in accordance with the hyperbolic nature of the full-potential 

operator. For first-order upwind differencing, the full-potential factor is a 3-point operator; for second-order 

upwind-biased differencing, the factor is a 7-point operator (see appendix B). 

In this one-dimensional case, the first two equations in the matrix operator L are uncoupled from the 

third. Thus we need only consider distributed relaxation of the first two equations; the third equation can be 

solved for Je in its primitive variable form once Su and Sp are found from distributed relaxation. Denoting 

the upper 2x2 block of L as L, an obvious choice for M is the matrix of cofactors of L, which gives a 

diagonal matrix for LM with the full-potential factors along the diagonal, i.e., 

EH=A."-flfc. 0 V (4.14) 
^ 0 (M2 - c2) 6XX J 

4.4. Boundary Treatment. As pointed out by Sidilkover [17], there is a connection between dis- 

tributed relaxation and the characteristic variables. For subsonic flow, a Jacobi update to the operators in 

LM is equivalent to a Kacmarcz relaxation of the characteristic equations, cast in terms of a characteristic 

combination of corrections as 

(u + c)8x (pcSu + Sp)  \ _     f pen + r2   , ,^ ^ 

(u — c)Sx~(pcSu — Sp) J y peri - r-i 

With first-order differencing, an equal and opposite correction to the downstream propagating characteristic 

variable pcSu + Sp is sent in Kacmarcz relaxation of the first equation to the local cell j and to the upstream 

cell j - 1; the correction to cell j is exactly one half of that found from a point Jacobi relaxation of 

the corresponding characteristic equation. Likewise, an equal and opposite correction to the upstream 

propagating characteristic variable pcSu - Sp is sent in Kacmarcz relaxation of the second equation to the 

local cell j and to the downstream cell j + 1. With a local update of the solution at each point, the smoothing 



TABLE 1 

The discretization errors in p at convergence and the relative L\ -norm errors after the FMG-1 algorithm for fully subsonic 

flow. 

h IM|:p Ik. -Hell :p ell 
1/32 0.2654xl(T3 <0.01 

1/64 0.6341xl(r4 <0.01 

1/128 0.1547xl0~4 <0.01 

1/256 0.3817xl(T5 <0.01 

rate should be equivalent to Gauss-Seidel relaxation of the standard 3-point Laplacian operator. However, 

the relaxation at cells adjacent to the boundary is inconsistent with the boundary conditions of the original 

problem; for example, characteristic boundary conditions would prescribe pcfiu + Sp and pc&u - Sp as zero 

at the upstream and downstream boundaries, respectively. 

This example demonstrates the general result mentioned earlier: that distributed relaxation needs to be 

modified near the boundaries. A simple boundary specification for the ghost variable <5w = (<Swi,<5w2)
T can 

be found in this case; enforcing a Neumann condition on 8w\ (Sw2 ) and a Dirichlet condition on Sw2 (Swi 

) at inflow (outflow) in subsonic relaxation is consistent with characteristic boundary conditions in terms 

of primitive variables. We instead use the more general formulation and apply another local conservative 

relaxation procedure at the boundary points to reduce the residuals. Distributed relaxation is then applied 

in the interior with simple Dirichlet conditions for the ghost variables Sw. 

4.5. Relaxation Sequence. The general solution procedure was to reduce the local residuals at least 

two orders of magnitude at the inflow boundary, the outflow boundary, and then at the shock region — both 

before and after sweeping the entire domain with distributed relaxation. The local conservative relaxation is 

made over the first two cells adjacent to the boundary. In the shock region, the local conservative relaxation 

was applied to nine cells centered on the upstream (supersonic) side of the shock. A pseudo-time step 

corresponding to a Courant number of 100 was used as an underrelaxation factor in the local conservative 

relaxations; otherwise purely steady-state equations were relaxed. In distributed relaxation, the variables 

(6w1,6w2)
T were explicitly used in the implementation; they were first relaxed over the interior cells, then 

distributions to (Su, 6p)T were made, and then the corrections to 6e were computed. As a check, single-grid 

computations verified that the convergence of the error per relaxation of subsonic equations (4.1) with first- 

order differencing was identical to that found with a Gauss-Seidel relaxation of the one-dimensional 3-point 

Laplacian operator with Neumann boundary conditions applied at one end of the domain. 

5. Computational Results. Computational results are shown in this section for fully subsonic, fully 

supersonic, and transonic flow with and without a shock. The Mach number distribution with second-order 

accurate discretization on a grid of 257 points is shown in Fig. 1 for fully subsonic, fully supersonic, and 

transonic flow with a shock; the shock location is specified at x = 0.75. There is no limiting applied in 

the transonic cases so there are some oscillations at the shock. In this one-dimensional case, the solution 

can easily be repaired by using an essentially nonoscillatory (ENO) [16] approach (see appendix C) but the 

emphasis of this work is on the solution procedure and not on the steady-state results. 

5.1. Fully Subsonic Flow. The smoothing rate of distributed relaxation for the primitive variable 

equations is expected to be equal to the worst among the smoothing rates obtained in relaxation of the 

scalar factors of the determinant of L, in our case convection and the full-potential factor. With the full- 



FIG. 1. Mach number distribution computed without limiting on a grid of 257 points for fully subsonic, fully supersonic, 

and transonic flow with a shock at x — 0.75. 

potential operator relaxed (Gauss-Seidel) and the convection operator solved by downstream marching from 

the inflow boundary, the convergence rate of the multigrid cycle per relaxation sweep for the first-order 

accurate discretization should be close to the smoothing factor, 0.447, of Gauss-Seidel relaxation for the 

one-dimensional 3-point Laplacian operator. 

Defect correction is often used in the solution of higher order implicit discretizations to reduce the arith- 

metic operation count while retaining the target accuracy. One seemingly possible implementation of defect 

correction is to use first-order accurate discretizations for the convection operators in L. The corresponding 

distribution matrix M consists of the first-order operators as well. This implementation, however, is not a 

good idea for obtaining good smoothing rates, because in terms of high-frequency components, a low-order 

operator and a corresponding high-order operator do not necessarily approximate each other well. Indeed, 

this implementation caused a slowdown in the convergence, and the smoothing rate corresponding to that 

of the Laplace equation was not attained. 

To illustrate this phenomenon, consider the Laplacian operator alone. The elliptic operator S,XX(WJ) 

arising from differencing the primitive variable equations with the second-order upwind-biased operator 

used here is a 7-point operator (see appendix B). Corrections (5w)j to the current approximate solutions 

Wj computed in Gauss-Seidel defect-correction relaxation with the 3-point Laplacian as a left-side (driver) 

operator can be found from 

h2 [(Mi-i - 2{6w)i -0~xx(ll>j)- (5.1) 

The smoothing factor, computed with local mode analysis, of this defect-correction relaxation (5.1) is gs = 

0.525, which is substantially smaller than the convergence rate per distributed relaxation of 0.9 observed 

with a multigrid FV(2,1) cycle applied to Eq. (4.10). The smoothing factor of distributed relaxation for 

Eq. (4.10) is computed by using local mode analysis as a norm of the matrix G, defined as 

G = /-(l-ffs)(Md)-
1Mi, (5.2) 



TABLE 2 

The discretization errors in p at convergence and the relative Li -norm errors after the FMG-1 algorithm for fully super- 

sonic flow. 

h IMhP He.lHMI 
■P llcrf|| 

1/32 0.8890xl(T4 <0.01 

1/64 0.2151xl0-4 Ü.02 

1/128 0.5278xlCT5 <0.01 

1/256 0.1306xl0"5 <0.01 

where matrix symbols associated with distribution matrices for target (second-order) and driver (first-order) 

operators are denoted Mt and Md, respectively. The calculated smoothing factor is 0.752, appreciably 

greater than the expected value of 0.525. The increased smoothing factor is explained by the fact that 

(Md)_1M< is far different from the identity matrix. 

With corrections distributed by the second-order distribution matrix operator (Md = Mt), the smooth- 

ing factor of distributed relaxation for Eq. (4.10) should be identical to that for relaxation of the Laplacian 

equation. Implementing the defect-correction relaxation (5.1) of the Laplacian equation but distributing 

corrections with the second-order distribution yielded an FV(2,1) cycle convergence rate per smoothing of 

0.51 — close to 0.525 predicted by the mode analysis of the defect-correction relaxation (5.1). 

Results for an FMG-1 algorithm, denoting a full multigrid algorithm with one FV(2,1) cycle at each 

level, are shown for fully subsonic flow in Table 1. All of the norms used in this and the following tables are 

Li-norms. The discretization error in pressure is defined pointwise as ed = pj - p(xj)exact, where p(x)exact 

is the steady-state solution of Eq. (3.1) and pj is the discrete solution of Eq. (4.1). A second-order spatial 

convergence in the Li-norm of ed is evident. The total error in pressure is defined as et = p(xj)exact -pj, 

where pj is the approximate solution obtained in the FMG-1 algorithm. Small relative difference between 

Li -norms of the total and discretization errors (see Table 1) indicates that optimal efficiency has been 

attained. The asymptotic convergence rate of the FV(2,1) cycle was 0.50-0.52 per relaxation for any of the 

four grids. 

5.2. Fully Supersonic Flow. In fully supersonic flow, it is generally possible to construct marching 

methods to solve the full-potential equation. For first-order differencing, the one-sided operator can easily 

be solved over the domain. For the second-order operator considered here, the defect-correction relaxation 

with the first-order upwind driver can be defined as 

— \(5w)j-2 - 2(<$w),-_i + (Sw)j] = -6XX{WJ). (5.3) 

This scheme can be solved by marching but, unfortunately, its amplification factor is larger than 1 for some 

error components. A suitable full-potential driver operator to replace the left-side operator of Eq. (5.3) can 

be found in the form 

[Sx +haSx6x\ (5.4) 

where the backward difference operator is defined to be first-order in the above expression. This is a 5- 

point operator that can be solved by marching. The maximum amplification factor of the supersonic defect- 

correction relaxation with the driver (5.4) and a = 0.23 is 0.55. With the second-order distribution operator, 

10 



TABLE 3 

The discretization errors in p at convergence and the relative Li-norm errors after the FMG-1 algorithm for transonic 

flow without a shock. 

h IMI -p 
1 let   —Hcdll :p 

Cä\\ 

1/32 0.1075xl(r3 0.05 

1/64 0.2666xl0-4 0.09 

1/128 0.6635xl(T5 0.03 

1/256 0.1655xl(T5 0.11 

TABLE 4 

The discretization errors in p at convergence and the relative Li-norm errors after the FMG-1 algorithm for transonic 

flow with a shock. 

h IMhP Ik,   -|MI 
■P «all 

1/32 0.4396xl0-2 <0.01 

1/64 0.2218xl0-2 0.015 

1/128 O.llllxlO-2 0.014 

1/256 0.5558xl0-3 <0.01 

computations for the fully supersonic flow corresponding to Mach 2 at inflow converged asymptotically at 

this rate. 

Results for the FMG-1 algorithm are shown in Table 2. The Li-norm of the discretization error in 

pressure shows the expected second-order spatial convergence. Optimal efficiency is attained with the FMG- 

1 algorithm. Here, the performance of the single-grid iteration at each level is the same as an FV(2,1) cycle, 

because the full-potential factor is being solved (rather than just smoothed) by marching. The asymptotic 

convergence rate per relaxation was 0.53-0.56 for any of the four grids. 

5.3. Transonic Flows. Results for the FMG-1 algorithm are shown for a smooth transonic flow in 

Table 3. The Li-norm of the discretization error in pressure shows the expected second-order spatial con- 

vergence. The relative deviations of the Li-norm of the total errors from the Li-norm of the discretization 

errors are increased from the fully subsonic or fully supersonic levels but still exhibit optimal performance. 

The asymptotic convergence rate per relaxation was 0.52-0.56 for any of the four grids. 

Results for the FMG-1 algorithm are shown for the transonic flow with a shock in Table 4 . The la-norm 

of the discretization error in pressure shows a first-order spatial convergence, because there is no limiting of 

the interpolation at the shock; i.e., maximum local errors occur at the shock and do not diminish with grid 

refinement. The relative deviations of the Li-norm of the total error with the FMG-1 algorithm from the 

Li-norm of the discretization error again exhibit optimal performance. The average convergence rate per 

relaxation over 10 cycles varied from 0.35 on the coarsest mesh to 0.51 on the finest mesh. Computations 

for this case with ENO differencing are presented in appendix C and show a similar performance with a 

monotone solution behavior in the shock region. 

6. Concluding Remarks. A general multigrid framework for obtaining textbook efficiency to solutions 

of the compressible Euler and Navier-Stokes equations in conservation law form has been discussed. The 

general methodology relies on a distributed relaxation procedure to reduce errors in regular (smoothly 

varying) flow regions; separate and distinct treatments for each of the factors (elliptic and/or hyperbolic) are 
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used to attain optimal reductions of errors. Near the boundaries and near shocks, additional local relaxations 

of the conservative equations are necessary. Example calculations are made for the quasi-one-dimensional 

Euler equations for situations with fully subsonic and fully supersonic flow, as well as transonic flows with 

and without a shock. All of the calculations showed that the FMG-1 algorithm provides a very accurate 

approximation of the exact solution. 
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Appendix A. Conservative Fluxes. 

The fluxes are constructed by using the flux-difference splitting of Roe [15] and are given as 

?j+i = 2-[F(Q«) + F(Qt) - |A|(Q« - Q£)] (A.l) 

where Ä = 9F/ÖQ is evaluated with a specific average of the left and right states, QL and QR, in order to 

exactly satisfy the jump conditions for a shock [15]. The left and right states are constructed for first-order 

accuracy as 

QR = Q.7+11 

(A.2) 

(A.3) 

and for second-order accuracy with Fromm's discretization as 

QL = Q,- + T(QJ+I -Q,--I), 

QR = Qj+i-^{Qi-Qi+2)- 

(A.4) 

(A.5) 

The dissipation matrix |A| = T |A| T-1 where T, T_1 are diagonalizing matrices, the matrix of eigenvalues 

A = 

Ai 0 0 

0 A2 0 

0     0    A3 

(A.6) 

and 

(Ai,A2,A3)
T = {u + c,u-c, (A.7) 
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The tilde superscript denotes that the eigenvalues are limited away from zero as, 

IA.-I = 
|A< if|Ai|>c, 

(A? + (?)2)/(2?)    otherwise, 
(A.8) 

mainly to prevent expansion shocks at sonic points for the first-order discretization accuracy, but also to 

make a smooth transition through the sonic point for the full-potential operator. The value e is taken as 

/?max{|Ai|, IA2I, IA3I}. This "entropy fix" is not optimal in any sense, as larger ß values for sonic points 

are required for the first order scheme on coarser grids. The value of ß was nominally set at 0.1 and was 

arbitrarily increased to 0.2 for grids of 9 points or less in the implicit first-order Jacobian matrices. 

Appendix B. Distribution Matrices. 

The coefficient matrices Ä± are defined as the positive and negative eigenvalue contributions to Ä, 

where 

Xf = (Xt ± |Ai|)/2 (B.l) 

and A is written in terms of its eigenvalues, A(Ai, A2, Aa), as 

|(Ai+A2)          5^(Ai-A2) 0 

f(Ai-A2)           i(Ai+A2) 0 

£(Ai-A2)    ^(A1+A2-2A3) A3 

The upper 2x2 block of L = A+<5~ + A~<5+ can be written as 

(B.2) 

L = 

and the corresponding matrix of cofactors is 

where 

M = 

h 

pc(t2) 

h 

-pc(t2) 

isto) 

-J-cM 

(B.3) 

(B.4) 

^ = ^[(A+-A+)5j + (Ar-A2-)J+]. 

(B.5) 

(B.6) 

The determinant of L is 

tl-tl^(X+Xt)6-S- 

+ (Ai-A2-)(5+(5+ (B.7) 
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TABLE 5 

The discretization errors in p with ENO differencing at convergence and the relative L\ -norm errors after the FMG-1 

algorithm for transonic flow with a shock. 

h IMhP Iktl-IMI 
■P Ml 

1/32 0.3597xl0"3 <0.01 

1/64 0.9711xl(T4 0.01 

1/128 0.5133xl(T4 0.07 

1/256 0.2665xl(T5 0.13 

The operators for second-order upwind-biased differencing are defined as 

- Z6WJ + 17wj+i + 2wj+2 - Wj+3), (B.8) 

Sx  6x (W.i) =  16^2 (WJ-4 ~ 10wi~3 + 31wJ-2 

- 28MJ_I - Wj + 6wj+i + Wj+2). 

Appendix C. Transonic Shock — ENO Differencing. 

(B.9) 

£ 
i   1 

FIG. 2. Mach number distribution near the shock computed with the FMG-1 algorithm compared to the exact discrete 

solution (h = 1/256,). 

Uniform application of the upwind-biased interpolations for state variables of appendix A (Fromm's 

scheme) leads to oscillations at the shock. These oscillations can be eliminated by a limiting procedure 

to reduce locally the order of approximation in the region of the shock. Here, an ENO approach [16] is 

used to prevent state-variable interpolations from crossing the shock. At the shock interface, the left (right) 

state variables, QZ,(QR), are found by one-sided second-order extrapolation; at the first interface upstream 

(downstream) of the shock, the state variables, QL(QR), are found by second-order central averaging. 
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Fig. 2 presents the Mach number distribution in the region of the shock and shows a nonoscillatory 

behavior with a one-point representation of the shock. The averaged convergence rate per relaxation obtained 

in the FV(2,1) cycle was ranged from 0.36 to 0.44 for different target grids. The discretization errors and 

relative deviations of the Lj-norm of the total error with the FMG-1 algorithm are shown in Table 5; 

comparison with Table 4 shows that the ENO discretization errors are smaller than the discretization errors 

of the unlimited interpolations, although first-order behavior is still found. In both situations, for this 

one-dimensional case, second-order accuracy is attained if the Li-norm is restricted to regions either far 

upstream or far downstream of the shock. Although not shown, we note that for this case, uniform second- 

order accuracy can be found with the ENO procedure above if the entropy fix is dropped at the shock; 

the shock jump is then reconstructed identically, and a zero-point shock is recovered. The focus of this 

investigation is on convergence, and both Fig. 2 and Table 5 indicate optimal efficiency has been attained 

with the FMG-1 algorithm. 
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